

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R O P É E N D E N O R M A L I S A T I O N
E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16926-13:2022 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-13

 December 2022

ICS 35.200; 35.240.15; 35.240.40

English version

 Extensions for Financial Services (XFS) interface
specification Release 3.50 - Part 13: Alarm Device Class

Interface - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the
constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the
National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held
accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

CWA 16926-13:2022 (E)

2

Table of Contents

European Foreword .. 3

1. Introduction .. 7

1.1 Background to Release 3.50 ... 7

1.2 XFS Service-Specific Programming ... 7

2. Alarms .. 9

3. References ... 10

4. Info Commands ... 11

4.1 WFS_INF_ALM_STATUS ... 11

4.2 WFS_INF_ALM_CAPABILITIES .. 13

5. Execute Commands .. 14

5.1 WFS_CMD_ALM_SET_ALARM ... 14

5.2 WFS_CMD_ALM_RESET_ALARM .. 15

5.3 WFS_CMD_ALM_RESET ... 16

5.4 WFS_CMD_ALM_SYNCHRONIZE_COMMAND ... 17

6. Events ... 18

6.1 WFS_SRVE_ALM_DEVICE_SET ... 18

6.2 WFS_SRVE_ALM_DEVICE_RESET .. 19

7. C - Header file .. 20

CWA 16926-13:2022 (E)

3

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29

“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of

CEN/CENELEC Internal Regulations - Part 2. It was approved by a Workshop of representatives of interested

parties on 2022-11-08, the constitution of which was supported by CEN following several public calls for

participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not

necessarily include all relevant stakeholders.

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2019-11-18.

The following organizations and individuals developed and approved this CEN Workshop Agreement:

• AURIGA SPA

• CIMA SPA

• DIEBOLD NIXDORF SYSTEMS GMBH

• FIS BANKING SOLUTIONS UK LTD (OTS)

• FUJITSU TECHNOLOGY SOLUTIONS

• GLORY LTD

• GRG BANKING EQUIPMENT HK CO LTD

• HITACHI CHANNEL SOLUTIONS CORP

• HYOSUNG TNS INC

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY

• KAL

• KEBA HANDOVER AUTOMATION GMBH

• NCR FSG

• NEXUS SOFTWARE

• OBERTHUR CASH PROTECTION

• OKI ELECTRIC INDUSTRY SHENZHEN

• SALZBURGER BANKEN SOFTWARE

• SECURE INNOVATION

• SIGMA SPA

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on

patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on

Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for

identifying any or all such patent rights.

The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-

technical content of CWA 16926-13, but this does not guarantee, either explicitly or implicitly, its correctness.

Users of CWA 16926-13 should be aware that neither the Workshop participants, nor CEN can be held liable for

damages or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-13 do so on

their own responsibility and at their own risk.

CWA 16926-13:2022 (E)

4

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference

Part 19: Biometrics Device Class Interface - Programmer's Reference

Parts 20 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP

standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

CWA 16926-13:2022 (E)

5

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class

Parts 49 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 78: Biometric Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a

complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the

CWA specifications, which are not requiring functional changes. The current version of the Release Notes is

available online from: https://www.cencenelec.eu/areas-of-work/cen-sectors/digital-society-cen/cwa-download-

area/.

The information in this document represents the Workshop's current views on the issues discussed as of the date of

publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no

warranty, express or implied, with respect to this document.

CWA 16926-13:2022 (E)

6

Revision History:

3.00 October 18, 2000 Initial Release.

3.10 November 29, 2007 For a description of changes from version 3.00 to version

3.10 see the ALM 3.10 Migration document.

3.20 March 2, 2011 For a description of changes from version 3.10 to version

3.20 see the ALM 3.20 Migration document.

3.30 March 19, 2015 For a description of changes from version 3.20 to version

3.30 see the ALM 3.30 Migration document.

3.40 December 06, 2019 For a description of changes from version 3.30 to version

3.40 see the ALM 3.40 Migration document.

3.50 November 18, 2022 For a description of changes from version 3.40 to version

3.50 see the ALM 3.50 Migration document.

CWA 16926-13:2022 (E)

7

1. Introduction

1.1 Background to Release 3.50

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software

interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed

within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop

environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN

Workshop Agreement (CWA).

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to

create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working

electronically and meeting quarterly.

Release 3.50 of the XFS specification is based on a C API and is delivered with the continued promise for the

protection of technical investment for existing applications. This release of the specification extends the

functionality and capabilities of the existing devices covered by the specification:

• Addition of E2E security

• PIN Password Entry.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,

messages, etc. These commands are used to request functions that are specific to one or more classes of Service

Providers, but not all of them, and therefore are not included in the common API for basic or administration

functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the

command is as similar as possible across all services, since a major objective of XFS is to standardize function

codes and structures for the broadest variety of services. For example, using the WFSExecute function, the

commands to read data from various services are as similar as possible to each other in their syntax and data

structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to

be provided by the developers of the services of that class; thus any particular device will normally support only a

subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor

implementation of that service does not support it, and the unsupported capability is not considered to be

fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.

An example would be a request from an application to turn on a control indicator on a passbook printer; the Service

Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the

Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor

implementation of that service does not support it, and the unsupported capability is considered to be fundamental

to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error for Execute commands or

WFS_ERR_UNSUPP_CATEGORY error for Info commands is returned to the calling application. An example

would be a request from an application to a cash dispenser to retract items where the dispenser hardware does not

have that capability; the Service Provider recognizes the command but, since the cash dispenser it is managing is

unable to fulfil the request, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a

WFS_ERR_INVALID_COMMAND error for Execute commands or WFS_ERR_INVALID_CATEGORY error

for Info commands is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing

subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and

WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify

their behavior accordingly, or they may use functions and then deal with error returns to make decisions as to how

CWA 16926-13:2022 (E)

8

to use the service.

CWA 16926-13:2022 (E)

9

2. Alarms

This specification describes the functionality of the services provided by Alarms (ALM) under XFS, by defining

the service-specific commands that can be issued, using the WFSGetInfo, WFSAsyncGetInfo, WFSExecute and

WFSAsyncExecute functions. This section describes the functionality of an Alarm (ALM) service that applies to

both attended and unattended (self-service) devices.

The Alarm device class is provided as a separate service due to the need to set or reset an Alarm when one or more

logical services associated with an attended CDM or unattended (self-service) device are locked. Because logical

services can be locked by the application the Alarm is implemented in a separate device class to ensure that a set

(trigger) or reset operation can be performed at any time.

CWA 16926-13:2022 (E)

10

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference

Revision 3.50

CWA 16926-13:2022 (E)

11

4. Info Commands

4.1 WFS_INF_ALM_STATUS

Description This command is used to request the Alarm status.

Input Param None.

Output Param LPWFSALMSTATUS lpStatus;

typedef struct _wfs_alm_status

 {

 WORD fwDevice;

 BOOL bAlarmSet;

 LPSTR lpszExtra;

 WORD wAntiFraudModule;

 } WFSALMSTATUS, *LPWFSALMSTATUS;

fwDevice

Specifies the state of the alarm device as one of the following flags:

Value Meaning

WFS_ALM_DEVONLINE The device is present, powered on and online

(i.e. operational, not busy processing a

request and not in an error state).

WFS_ALM_DEVOFFLINE The device is offline (e.g. the operator has

taken the device offline by turning a switch).

WFS_ALM_DEVPOWEROFF The device is powered off or physically not

connected.

WFS_ALM_DEVNODEVICE There is no device intended to be there; e.g.

this type of self service machine does not

contain such a device or it is internally not

configured.

WFS_ALM_DEVUSERERROR The device is present but a person is

preventing proper device operation. The

application should suspend the device

operation or remove the device from service

until the Service Provider generates a device

state change event indicating the condition

of the device has changed e.g. the error is

removed (WFS_ALM_DEVONLINE) or a

permanent error condition has occurred

(WFS_ALM_DEVHWERROR).

WFS_ALM_DEVHWERROR The device is present but inoperable due to a

hardware fault that prevents it from being

used.

WFS_ALM_DEVBUSY The device is busy and unable to process an

execute command at this time.

WFS_ALM_DEVFRAUDATTEMPT The device is present but is inoperable

because it has detected a fraud attempt.

WFS_ALM_DEVPOTENTIALFRAUD The device has detected a potential fraud

attempt and is capable of remaining in

service. In this case the application should

make the decision as to whether to take the

device offline.

bAlarmSet

Specifies the state of the Alarm as either Reset (FALSE) or Set (TRUE).

CWA 16926-13:2022 (E)

12

lpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is

returned as a series of “key=value” strings so that it is easily extensible by Service Providers.

Each string is null-terminated, with the final string terminating with two null characters. An

empty list may be indicated by either a NULL pointer or a pointer to two consecutive null

characters.

wAntiFraudModule

Specifies the state of the anti-fraud module as one of the following values:

Value Meaning

WFS_ALM_AFMNOTSUPP No anti-fraud module is available.

WFS_ALM_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.

WFS_ALM_AFMINOP Anti-fraud module is inoperable.

WFS_ALM_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.

WFS_ALM_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter

may not be device or vendor-independent.

In the case where communications with the device has been lost, the fwDevice field will report

WFS_ALM_DEVPOWEROFF when the device has been removed or

WFS_ALM_DEVHWERROR if the communications are unexpectedly lost. All other fields

should contain a value based on the following rules and priority:

1. Report the value as unknown.

2. Report the value as a general h/w error.

3. Report the value as the last known value.

CWA 16926-13:2022 (E)

13

4.2 WFS_INF_ALM_CAPABILITIES

Description This command is used to retrieve the capabilities of the Alarm.

Input Param None.

Output Param LPWFSALMCAPS lpCaps;

typedef struct _wfs_alm_caps

 {

 WORD wClass;

 BOOL bProgrammaticallyDeactivate;

 LPSTR lpszExtra;

 BOOL bAntiFraudModule;

 LPDWORD lpdwSynchronizableCommands;

 } WFSALMCAPS, *LPWFSALMCAPS;

wClass

Specifies the logical service class as WFS_SERVICE_CLASS_ALM.

bProgrammaticallyDeactivate

Specifies whether the Alarm can be programmatically deactivated (TRUE) or can not be

programmatically deactivated (FALSE).

lpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is

returned as a series of “key=value” strings so that it is easily extensible by Service Providers.

Each string is null-terminated, with the final string terminating with two null characters. An

empty list may be indicated by either a NULL pointer or a pointer to two consecutive null

characters.

bAntiFraudModule

Specifies whether the anti-fraud module is available. This can either be TRUE if available or

FALSE if not available.

lpdwSynchronizableCommands

Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can

be synchronized. If no execute command can be synchronized then this parameter will be NULL.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter

may not be device or vendor-independent.

CWA 16926-13:2022 (E)

14

5. Execute Commands

5.1 WFS_CMD_ALM_SET_ALARM

Description This command is used to trigger an Alarm.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a

result of this command:

Value Meaning

WFS_SRVE_ALM_DEVICE_SET The alarm device has been triggered.

Comments None.

CWA 16926-13:2022 (E)

15

5.2 WFS_CMD_ALM_RESET_ALARM

Description This command is used to reset an Alarm.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a

result of this command:

Value Meaning

WFS_SRVE_ALM_DEVICE_RESET The alarm device has been reset.

Comments None.

CWA 16926-13:2022 (E)

16

5.3 WFS_CMD_ALM_RESET

Description Sends a service reset to the Service Provider.

Input Param None.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments This command is used by an application control program to cause a device to reset itself to a

known good condition.

CWA 16926-13:2022 (E)

17

5.4 WFS_CMD_ALM_SYNCHRONIZE_COMMAND

Description This command is used to reduce response time of a command (e.g. for synchronization with

display) as well as to synchronize actions of the different device classes. This command is

intended to be used only on hardware which is capable of synchronizing functionality within a

single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in

the lpdwSynchronizableCommands parameter of the WFS_INF_ALM_CAPABILITIES.

This command is optional, i.e. any other command can be called without having to call it in

advance. Any preparation that occurs by calling this command will not affect any other

subsequent command. However, any subsequent execute command other than the one that was

specified in the dwCommand input parameter will execute normally and may invalidate the

pending synchronization. In this case the application should call the

WFS_CMD_ALM_SYNCHRONIZE_COMMAND again in order to start a synchronization.

Input Param LPWFSALMSYNCHRONIZECOMMAND lpSynchronizeCommand;

typedef struct _wfs_alm_synchronize_command

 {

 DWORD dwCommand;

 LPVOID lpCmdData;

 } WFSALMSYNCHRONIZECOMMAND, *LPWFSALMSYNCHRONIZECOMMAND;

dwCommand

The command ID of the command to be synchronized and executed next.

lpCmdData

Pointer to data or a data structure that represents the parameter that is normally associated with

the command that is specified in dwCommand. This parameter can be NULL if no command input

parameter is needed or if this detail is not needed to synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the

application synchronizes for a command with this command specifying a parameter but

subsequently executes the synchronized command with a different parameter. This case should

not result in an error; however, the preparation effect could be different from what the application

expects. The application should, therefore, make sure to use the same parameter between

lpCmdData of this command and the subsequent corresponding execute command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_ALM_COMMANDUNSUPP The command specified in the dwCommand

field is not supported by the Service

Provider.

WFS_ERR_ALM_SYNCHRONIZEUNSUPP The preparation for the command specified

in the dwCommand with the parameter

specified in the lpCmdData is not supported

by the Service Provider.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments For sample flows of this synchronization see the [Ref 1] Appendix C.

CWA 16926-13:2022 (E)

18

6. Events

6.1 WFS_SRVE_ALM_DEVICE_SET

Description The Alarm has been set (triggered) by an external event or a programmatic request to set (trigger)

the Alarm.

Event Param None.

Comments None.

CWA 16926-13:2022 (E)

19

6.2 WFS_SRVE_ALM_DEVICE_RESET

Description The Alarm has been manually or programmatically reset.

Event Param None.

Comments None.

CWA 16926-13:2022 (E)

20

7. C - Header file

/**

* *

* xfsalm.h XFS – Alarm (ALM) definitions *

* *

* Version 3.40 (November 18 2022) *

* *

**/

#ifndef __INC_XFSALM__H

#define __INC_XFSALM__H

#ifdef __cplusplus

extern "C" {

#endif

#include <xfsapi.h>

/* be aware of alignment */

#pragma pack (push, 1)

/* values of WFSALMCAPS.wClass */

#define WFS_SERVICE_CLASS_ALM (11)

#define WFS_SERVICE_CLASS_VERSION_ALM (0x3203) /*Version 3.50 */

#define WFS_SERVICE_CLASS_NAME_ALM "ALM"

#define ALM_SERVICE_OFFSET (WFS_SERVICE_CLASS_ALM * 100)

/* ALM Info Commands */

#define WFS_INF_ALM_STATUS (ALM_SERVICE_OFFSET + 1)

#define WFS_INF_ALM_CAPABILITIES (ALM_SERVICE_OFFSET + 2)

/* ALM Execute Commands */

#define WFS_CMD_ALM_SET_ALARM (ALM_SERVICE_OFFSET + 1)

#define WFS_CMD_ALM_RESET_ALARM (ALM_SERVICE_OFFSET + 2)

#define WFS_CMD_ALM_RESET (ALM_SERVICE_OFFSET + 3)

#define WFS_CMD_ALM_SYNCHRONIZE_COMMAND (ALM_SERVICE_OFFSET + 4)

/* ALM Messages */

#define WFS_SRVE_ALM_DEVICE_SET (ALM_SERVICE_OFFSET + 1)

#define WFS_SRVE_ALM_DEVICE_RESET (ALM_SERVICE_OFFSET + 2)

/* values of WFSALMSTATUS.fwDevice */

#define WFS_ALM_DEVONLINE WFS_STAT_DEVONLINE

#define WFS_ALM_DEVOFFLINE WFS_STAT_DEVOFFLINE

#define WFS_ALM_DEVPOWEROFF WFS_STAT_DEVPOWEROFF

#define WFS_ALM_DEVNODEVICE WFS_STAT_DEVNODEVICE

#define WFS_ALM_DEVHWERROR WFS_STAT_DEVHWERROR

#define WFS_ALM_DEVUSERERROR WFS_STAT_DEVUSERERROR

#define WFS_ALM_DEVBUSY WFS_STAT_DEVBUSY

#define WFS_ALM_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT

#define WFS_ALM_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

/* values of WFSALMSTATUS.wAntiFraudModule */

#define WFS_ALM_AFMNOTSUPP (0)

#define WFS_ALM_AFMOK (1)

#define WFS_ALM_AFMINOP (2)

#define WFS_ALM_AFMDEVICEDETECTED (3)

#define WFS_ALM_AFMUNKNOWN (4)

/* XFS ALM Errors */

CWA 16926-13:2022 (E)

21

#define WFS_ERR_ALM_COMMANDUNSUPP (-(ALM_SERVICE_OFFSET + 0))

#define WFS_ERR_ALM_SYNCHRONIZEUNSUPP (-(ALM_SERVICE_OFFSET + 1))

/*===*/

/* ALM Info Command Structures */

/*===*/

typedef struct _wfs_alm_status

{

 WORD fwDevice;

 BOOL bAlarmSet;

 LPSTR lpszExtra;

 WORD wAntiFraudModule;

} WFSALMSTATUS, *LPWFSALMSTATUS;

typedef struct _wfs_alm_caps

{

 WORD wClass;

 BOOL bProgrammaticallyDeactivate;

 LPSTR lpszExtra;

 BOOL bAntiFraudModule;

 LPDWORD lpdwSynchronizableCommands;

} WFSALMCAPS, *LPWFSALMCAPS;

typedef struct _wfs_alm_synchronize_command

{

 DWORD dwCommand;

 LPVOID lpCmdData;

} WFSALMSYNCHRONIZECOMMAND, *LPWFSALMSYNCHRONIZECOMMAND;

/* restore alignment */

#pragma pack(pop)

#ifdef __cplusplus

} /*extern "C"*/

#endif

#endif /* __INC_XFSALM__H */

